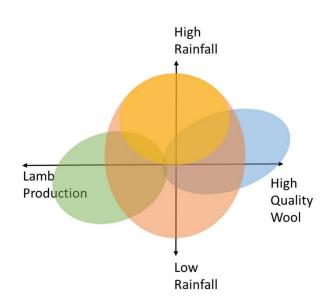
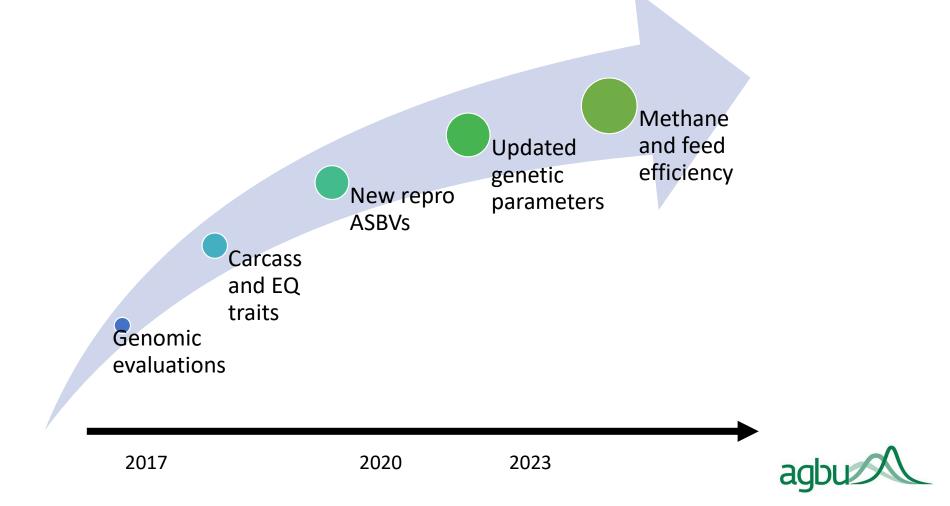
Methane impacts in Merino indexes


Andrew Swan

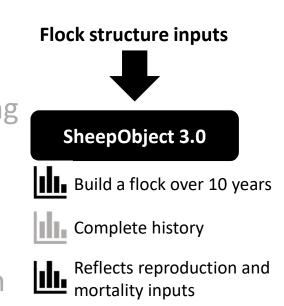
AGBU Summit 2023

Australia's genetics institute for agriculture

Research indexes from July 2023


Trait	Maternal + Lamb	Sustainable Merino	Sustainable Merino - HR	Wool Production	Fine Wool
Clean fleece weight	••			••••	•••
Fibre diameter	٠	٠	٠	••	•••
Lamb growth	•••	••	••	٠	•
Carcase composition	••	٠	٠		
Adult weight	-●	-	-●	-●	-●
Worm egg count			••		•
Reproduction	•••	••	••	٠	•
Breech wrinkle	••	••	••	••	••
Dag			••		
Condition score	••	•	•	•	•

Evolution of sheep indexes

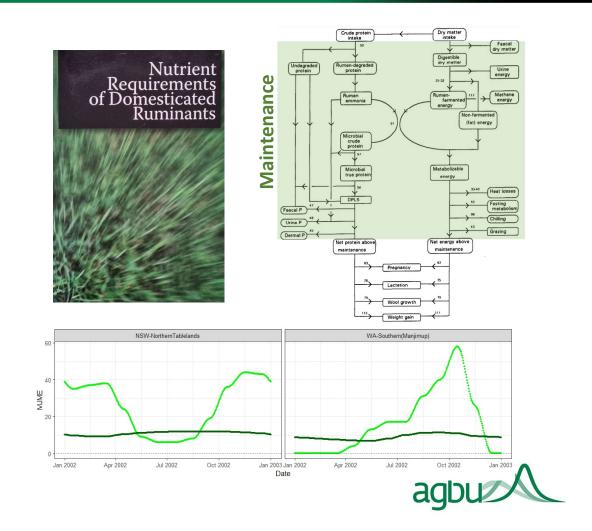


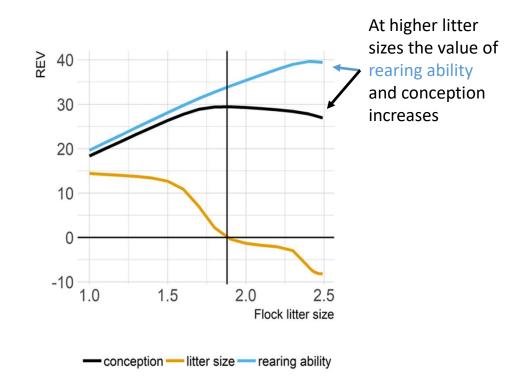
Advances in ASBVs

- Flock modelling
- Feed requirements and costing
- Reproduction components
- Resilience and body condition
- Methane modelling

Provides full flock structure for year evaluated

On every day for every sheep we know


- Age (variation in DOB)
- Birth and rearing type
- Dam's age
- Previous reproductive status
- Reproductive status


- Cull on age, preg scan, etc
- Shearing
- Sell lambs
- Animal husbandry
- Feeding

- Flock modelling
- Feed requirements and costing
- Reproduction components
- Resilience and body condition
- Methane prediction

- Flock modelling
- Feed requirements and costing
- Reproduction components
- Resilience and body condition
- Methane prediction

agbu

 Flock modelling Weight loss and recovery **ME Requirements** Feed requirements and costing Reproduction components Day 0 Day 100 Day 150 Day 240 Resilience and body condition **Ewes with better "Condition"** require less recovery feed Methane prediction Body condition in ewes Carcass yield and EQ in lambs

Requirements not met

Day 0

- Flock modelling
- Feed requirements and costing
- Reproduction components
- Resilience and body condition

Journal of Cleaner Production Volume 384, 15 January 2023, 135523

Prediction of enteric methane emissions by sheep using an intercontinental database

Alejandro Belanche^{,a,b} A, Bexander N. Hristov^{,c}, Henk J. van Lingen^{,d}, Stuart E. Denman^{,e}, Ermias Kebreab^{,f}, Angela Schwarm^{,g}, Michael Kreuzer^{,h}, Mutian Niu^{,h}, Maguy Eugène^{,j}, Vincent Niderkorn^{, i}, Cécile Martin^{, i}, Harry Archimède^{,j}, Mark McGee^{, k}, Christopher K. Reynolds^{, l}, Les A. Crompton^{, l}, Ali Reza Bayat^{,m}, Zhongtang Yu^{,n}, André Bannink^{,c}, Jan Dijkstra^{, p}, Alex V. Chaves^{, q}, Harry Clark^{,r}, Stefan Muetzel^{,s}, Vibeke Lind^{,t}, Jon M. Moorby^{,u}, John A. Rooke^{,v}, Aurélie Aubry^{,w}, Walter Antezana^{,x}, Min Wang^{, Y}, Roger Hegarty^{,z}, V. Hutton Oddy^{, sa}, Julian Hill^{, sb}, Philip E. Vercoe^{, sc, ad}, Jean Víctor Savian^{, se}, Adibe Luiz Abdalla^{, sf}, Yosra A. Soltan^{, sg}, Alda Lúcia Gomes Monteiro^{, sh}, Juan Carlos Ku-Vera^{, si}, Gustavo Jaurena^{, sj}, Carlos A. Gómez-Bravo^{, ak}, Olga L. Mayorga^{, al}, Guilhermo F.S. Congio^{, sm}, David R. Yáñez-Ruiz^{,s}, A

• Methane prediction

- Intake, diet digestibility, body weight
- Young versus adult sheep

Methane outcomes in the SM index

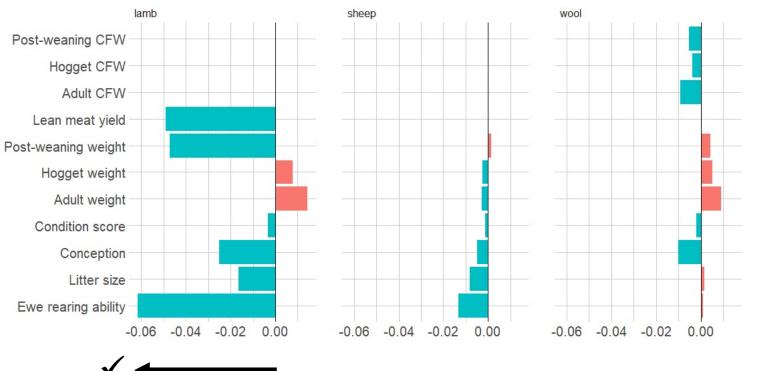
Sustainable Merino index

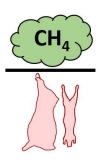
Trait	Sustainable Merino
Clean fleece weight	
Fibre diameter	٠
Lamb growth	••
Carcase composition	•
Adult weight	-
Worm egg count	
Reproduction	••
Breech wrinkle	••
Dag	
Condition score	•

Key production system assumptions:

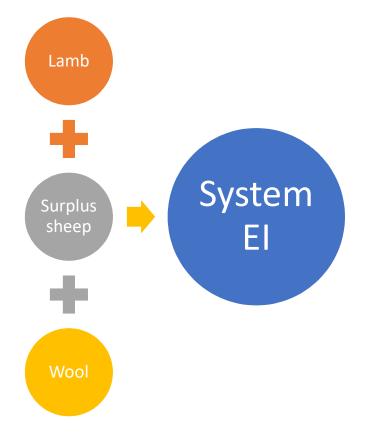
- Wethers sold as finished lambs at 10mo
- 65kg mature ewe size
- 6kg adult greasy fleece weight
- Ratio of wool:meat income of 46:54

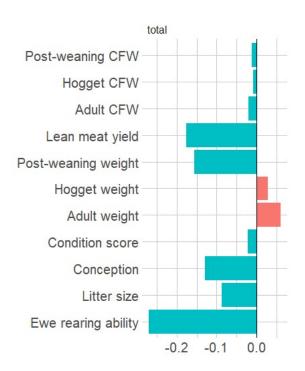
Impact of trait changes on methane production

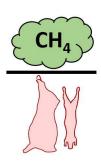



Trait	Methane production per ewe
Fleece weight	\leftrightarrow
Post-weaning weight	1
Hogget/Adult weight	1
Condition score	\checkmark
Conception	<u> </u>
Litter size	<u> </u>
Ewe rearing ability	ተተተ

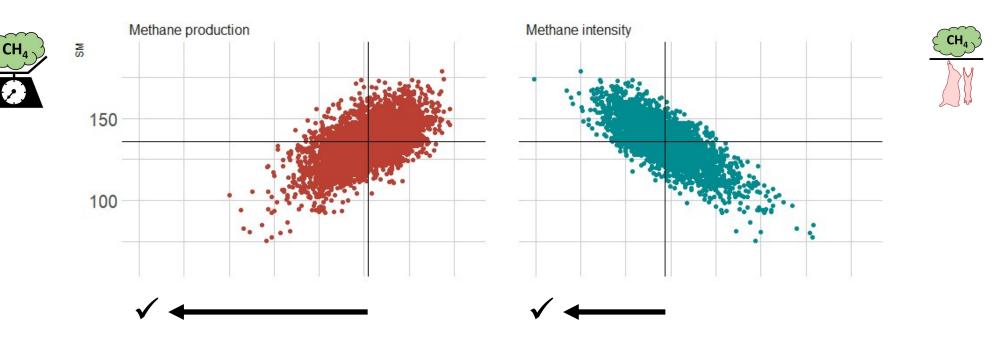
Methane intensity


Methane per kg of product \rightarrow change for each trait relative to base flock

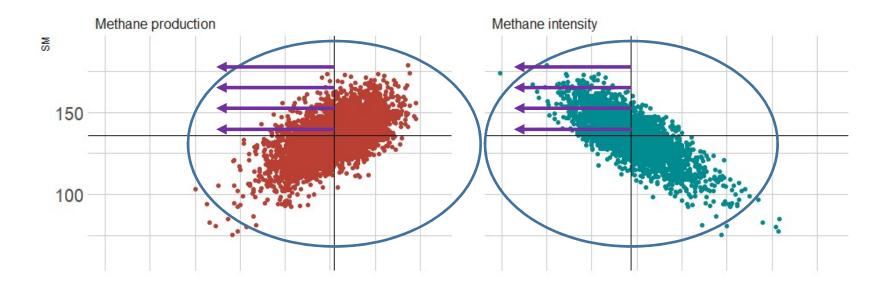




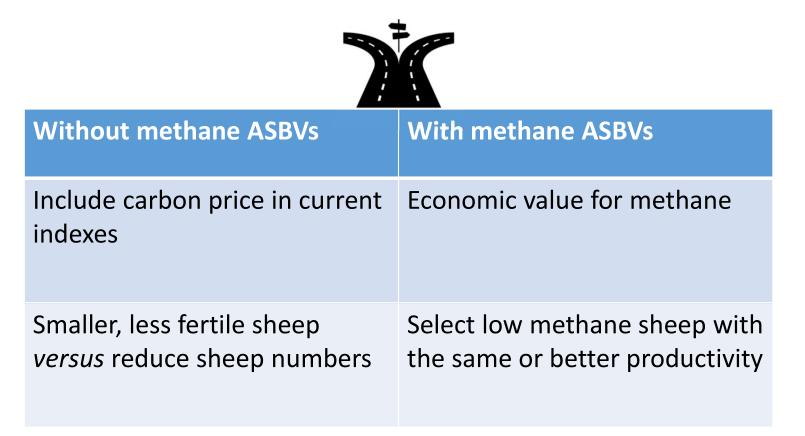
Total methane intensity



Methane sub-indexes


SM index values for current MERINOSELECT sires versus methane sub-index values

Current indexes increase methane per head but are improving methane intensity



...with methane EBVs

Pathways to reduced emissions

Summary

- SheepObject has the capacity to address methane emissions
- Current indexes are improving emissions intensity but increasing methane per head
- Phenotyping remains the key

